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Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms

Wolfgang Barthel, Alexander K. Hartmann, and Martin Weigt
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Stochastic local search algorithms are frequently used to numerically solve hard combinatorial optimization
or decision problems. We give numerical and approximate analytical descriptions of the dynamics of such
algorithms applied to random satisfiability problems. We find two different dynamical regimes, depending on
the number of constraints per variable: For low constraintness, the problems are solved efficiently, i.e., in linear
time. For higher constraintness, the solution times become exponential. We observe that the dynamical behav-
ior is characterized by a fast equilibration and fluctuations around this equilibrium. If the algorithm runs long
enough, an exponentially rare fluctuation towards a solution appears.
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I. INTRODUCTION

The last years have seen a fruitful exchange between
oretical computer science and statistical mechanics@1,2#.
Due to the formal analogy between various combinato
optimization problems and certain spin-glass models, s
stantial progress in the understanding of hard combinato
questions could be made by using tools that were origin
developed in the statistical mechanics of disordered syste

The most striking results so far were obtained in the
scription of the solution-space structure of the random sa
fiability problem @3–7#, of the number partitioning problem
@8,9#, of vertex covers@10–12# or colorings@13# of random
graphs. In these cases, equilibrium methods from statis
mechanics can be applied directly, including, e.g., the rep
and cavity approaches. The main result is that these mo
undergo phase transitions from an easily solvable, under
strained phase to a hard, highly constrained one. The latt
characterized by the existence of glasslike states, i.e.,
solution space is subdivided into a large number of disc
nected clusters, and there are exponentially many exc
states hindering even the best local algorithms from find
optimal solutions in subexponential time~where exponentia
means, here and in the following, exponential in the sys
size, as given, e.g., by the number of discrete degree
freedom or, in a more computer-science oriented languag
the number of bits needed to encode an instance of the p
lem under consideration!.

Up to now, much less is understood about the dynam
behavior of algorithms that are used to numerically solve
combinatorial problems. Also these are known to unde
algorithm-dependent phase transitions from phase spac
gions, where the problems are typically efficiently solvab
to regions where solutions are exponentially hard to c
struct. Some understanding was obtained for heuristics,
approximate algorithms running in linear time, see, e
Refs. @14–16#, for complete solvers@17–19# that are guar-
anteed to find an optimal solution, and finally for randomiz
versions of these complete algorithms@20,21#. The problem
in analyzing algorithms is that they are intimately related
nonequilibrium statistical mechanics, which frequently
technically much harder to handle. In addition, algorith
are not forced to fulfill physical criteria such as detailed b
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ance, which again complicates the analysis.
In this paper, we are going to analyze a different class

algorithms:stochastic local search algorithms, in particular,
variants of the so-calledwalk-SAT algorithm @22# which is
one of the most popular and successful solvers for satisfia
ity problems. Whereas the full problem is to hard to atta
successfully by means of analytical tools, we will give som
approximation methods that allow us to draw a qualitat
picture on how these algorithms solve an optimization pr
lem.

The paper is organized as follows: In Sec. II, the cons
ered models are introduced. We first introduce the rand
K-satisfiability (K-SAT! problem and give an overview o
the current state of knowledge. Then, we introduce a sec
model, the randomK-XOR-satisfiability (K-XOR-SAT! prob-
lem. Being in many aspects similar to theK-SAT, it has
recently attracted some interest due to its better analyt
tractability. In the last part of Sec. II, we give a short intr
duction to some stochastic local search algorithms, in p
ticular, to the famous walk-SAT algorithm which will be ana
lyzed in the present paper. We then show some numer
observations in Sec. III. These are analytically explained
Secs. IV and V. The first of these two sections deals with
linear-time behavior, whereas the second one describes
exponential-time behavior. Our results are summarized in
last section.

II. THE MODELS

A. Random K satisfiability

A randomK-satisfiability (K-SAT! formula F consists of
M logical clauses$Cm%m51, . . . ,M which are defined over a se
of N Boolean variables$xi50,1% i 51, . . . ,N which can take the
values 05FALSE and 15TRUE. Every clause containsK ran-
domly chosen Boolean variables that are connected by l
cal OR operations (~) and appear negated with probabili
1/2, e.g.,Cm5(xi~ x̄ j~xk) for K53. Because of theOR

conjunction aK-SAT clause is satisfied if at least one of th
K variables has the correct assignment. In the formulaF, all
clauses are connected by logicalAND operations (̀ ),

F5`m51
M Cm , ~1!
©2003 The American Physical Society04-1
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so all clauses have to be satisfied simultaneously in orde
satisfy the formula. ForK52, i.e., if each clause connec
only two variables, the problem is easy, and polynomial-ti
algorithms are known@24#. On the other hand, the problem
becomes nondeterministic polynomial~NP! complete for all
K.3 @24#, so one expects that no efficient algorithm to so
genericK-SAT formulas in polynomial time can be found.

The considerable attention attracted by the randomK-SAT
problem was initiated about one decade ago, when the m
was numerically observed@25# to undergo a characteristi
phase transition which is parametrized by the clause
variable ratioa5M /N. For a,4.26 and sufficiently large
system sizesN, almost all 3-SAT formulas were found to b
satisfiable. Fora.4.26, this behavior changes drastical
the formulas are found to be unsatisfiable with a probabi
approaching 1 in the thermodynamic limitN→`. Even
more interestingly, this transition was observed to coinc
with a strong exponential peak in the algorithmic soluti
time of complete algorithms. The hardest to solve formu
are thus located close to the phase boundary, and are sa
be critically constrained.

The observation of this phase transition finally led to t
application of analytical tools developed in the statistical m
chanics of disordered systems, since randomK-SAT can be
mapped to a spin-glass model on a random hypergraph. A
the pioneering work by Monasson and Zecchina@3# provid-
ing the first analytical approximation to the phase transit
using the replica method, many efforts were done to impr
the analytical understanding. In Ref.@5#, on the basis of a
variational approach, a second phase transition was
gested to appear inside the satisfiable phase: For very lowa,
the set of all solutions to aK-SAT formula was found to be
unstructured, with the exponentially large number of so
tions collected in one large connected cluster. For largera,
the solution space breaks into an exponential number of c
ters. Using the cavity approach, the~probably! exact location
of this transition was established recently forK53. It is
given byad53.92 @6,7#.

B. A simpler but similar model: Random K-XOR-SAT

A model showing a very similar behavior, but being an
lytically much more tractable, is given by the rando
K-XOR-SAT problem@in the physical literature initially de-
noted as K-hSAT ~hyper-SAT! @26##. The difference to
K-SAT is that the variables appearing in the clauses are c
nected by logicalXOR operations (% ) instead ofOR. A clause
is thus satisfied if an odd number of variables is assig
correctly, i.e., toTRUE if the variable appears non-negate
and toFALSE if it appears negated.

The % operation is equivalent to an integer additio
modulo 2. Using this equivalence, we can map each claus
a linear equation~modulo 2!, and the formula, consequentl
to a coupled set ofM linear equations. The solution of thi
system can be easily found inO(N3) steps. Hence,XOR-SAT
formulas can be solved efficiently by aglobal algorithm, i.e.,
by exploiting the global information about the instance a
its structure in every step. If we use, however,local algo-
rithms like the ones used also forK-SAT, we observe a very
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similar behavior of both models.
Again, the system can be conveniently parametrized

a5M /N. The numbers given below are valid forK53, but
the qualitative picture is valid for anyK.3. For a
,0.818, the formula is typically easy to solve, the soluti
space consisting of one large cluster. In the region 0.
,a,0.918, the formulas are still satisfiable with probabili
tending to 1 forN→`, but the solution state decays into a
exponential number of clusters. In addition, there are a
exponentially many metastable states that prevent even
best local algorithms from fast convergence to a solution.
a.0.918, the system is almost surely unsatisfiable.

These values were originally calculated using the rep
method which are believed to be exact, but still lacks a r
orous foundation. A very beautiful result forK-XOR-SAT was
recently obtained in two independent works@27,28#: The re-
sults given above, including the ones obtained by one-s
replica symmetry broken calculations, were reproduced
ing mathematically rigorous methods.

TheK-XOR-SAT problem is also interesting from a phys
cal point of view, because it is equivalent to a dilutedK-spin
model. Such models are frequently discussed in connec
to the glass transition, see, e.g., Ref.@29#.

C. Stochastic local search algorithms

As already mentioned in the introduction, here we are
interested in the solution space structure ofK-SAT and
K-XOR-SAT, but in thenonequilibrium dynamicsof so-called
stochastic local search algorithms.

The idea behind these algorithms is that, if a formula
satisfiable, a solution can frequently be found more quic
if randomizedalgorithms are used. In general, these alg
rithms areincomplete, i.e., they stop once they have found
solution, but they are not guaranteed to really find one. D
to their random character, they are also not able to prove
unsatisfiability of a formula. In the case where there is
solution the algorithm just runs forever, or until som
running-time cutoff is reached.

Here, we mainly concentrate on thewalk-SAT algorithm
introduced in Ref.@22#. Its most recent implementations a
available in theSATLIB @30#, and they are one of the bes
stochastic local search algorithms for randomK-SAT. The
algorithm starts with a random assignment to allN variables.
Within this assignment, there is a numberasN of satisfied
clauses, whereas the otherauN5(a2as)N are unsatisfied.

In every step, the algorithm selects an unsatisfied clausC
randomly and then one of itsK variablesv* ~a! with prob-
ability q randomly~walk step!, ~b! with probability 12q the
variable in C occurring in the least number of satisfie
clauses~greedystep!.

The current assignment ofv* is inverted. All clauses con-
tainingv* that were unsatisfied before become now satisfi
Clauses that were satisfied behave differently for the t
models under consideration: ForK-SAT, a previously satis-
fied clause becomes unsatisfied if and only ifv* was the
only correctly assigned variable in this clause. ForK-XOR-
SAT, every previously satisfied clause containingv* be-
comes unsatisfied.
4-2
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These steps are repeated until no unsatisfied clause is
Then, the algorithm has found a solution of formulaF and
stops. As noted earlier the algorithm will run forever if n
solution exists.

There are variants for the greedy step: The algorit
could also select the variable inC leading to the minimal
number of unsatisfied clauses~‘‘maximal gain’’!, or the one
minimizing the number of previously satisfied clauses t
become unsatisfied~‘‘minimal negative gain’’!. The second
case is equivalent to our choice forK-XOR-SAT. ForK-SAT,
they are different due to the fact that not all satisfied clau
become unsatisfied.

A completely different heuristic is the GSAT heurist
@31# which, in the greedy step, globally selects the varia
leading to the minimal number of unsatisfied clauses. In
merical studies, this selection is outperformed by walk-S
@32#. There also other heuristic variations of walk-SAT a
GSAT are discussed. For reasons of clarity, we concent
completely on the algorithm given above. We expect, ho
ever, that the approximate approach developed in this p
can also be extended to more involved cases, as long a
dynamics can be considered as a Markov process.

A different iteration of variable flips was introduced b
Schöning @33#. He suggested to stop the algorithm after 3N
steps, and to restart it by selecting a new random initial
signment to allN Boolean variables. Forq51, i.e., for a
pure random walk dynamic, he was able to prove that
worst case solution time goes down from 2N iterations to
only (4/3)N steps, i.e., the algorithm is exponentially acc
erated. This simple algorithm shows, up to a refinement le
ing to 1.3303N steps@34#, the currently best known wors
case behavior of all SAT algorithms.

In the following sections, we will analyze both models f
exponential waiting times and for an exponential number
random restarts. We will concentrate on formulas that
satisfiable, i.e., on variables-to-clauses ratios inside the
isfiable phase of the model under consideration. In the un
isfiable phase there are no solutions, thus the algorithm
not terminate by construction.

III. NUMERICAL RESULTS ON THE BEHAVIOR OF
WALK-SAT

Now we present some numerical observations on the
havior of walk-SAT applied to randomly generated satis
ability formulas. We look toK-SAT as well as toK-XOR-
SAT, and we mainly concentrate on the solution tim
needed by walk-SAT, and the dynamical evolution of t
number of unsatisfied clauses, while the algorithm is r
ning. Explaining these observations will be the final aim
the following sections.

A. Random K-SAT

Let us start with randomK-SAT. At first, we realize that
the running time heavily depends on the ratioa5M /N of
clauses to variables. Let us concentrate on the caseK53 and
q51 first, i.e., only walk steps are performed. For smalla
negating one variable in an unsatisfied clause rarely ca
other clauses to become unsatisfied. Up to a critical thres
06610
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ad.2.7 a solution is found in a median time growing lin
early with N, above this point running times grow expone
tially, see Figs. 1 and 2. This observation does not depend
the fact whether we use the algorithm with or without r
starts. In the following, we measure all running times in t
number of Monte Carlo sweeps~MC sweeps!, i.e., a single
step of the algorithm leading to the negation of one varia
is counted asDt51/N. During a time interval of length one
every variable becomes thus negated on an average o
Note that in this representation linear solution times lead t
constant number of MC sweeps, whereas exponential it
tions of walk-SAT correspond to exponentially many M
sweeps. In Fig. 3, we show a histogram of the resolut
times inside the exponential regime. Obviously, this distrib
tion can be well described by the mean of the logarithm
the running time. For such an exponentially dominated d
tribution this is equivalent to characterizing it by the media
whereas the average running time would be dominated
exponentially rare events with exponentially longer reso
tion times.

FIG. 1. 3-SAT: dependency of the running time of walk-SA
without restarts on the ratioa of clauses to variables.

FIG. 2. 3-SAT: average numberau of unsatisfied clauses pe
variable with sample sizeN550 000. Initially, this energy density
quickly decreases. Fora,ad.2.7, it becomes zero after a finit
time, for largera a nonzero plateau is reached.
4-3
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The algorithm starts with an extensive number of unsa
fied clauses, and stops when their number reaches zero
characterize the search process, we therefore look at the
havior ofau(t), which is given as the number of unsatisfie
clauses per variable. We can think of it as an energy den
of the system of theN variables. In a randomly drawn star
ing configuration of the Boolean variablesxi , i 51, . . . ,N,
there are on an average 1/8 of all clauses unsatisfied, we
have almost surelyau(t50)5(M /8)/N5a/8. Concentrat-
ing first on the linear-time behavior, i.e., to finite MC time
it is convenient to work with large systems,N@1. These
show a good separation of linear and exponential time sc
but also minimize the influence of fluctuations. Numerica
we find, in dependence ona, the following behavior.

~a! For a,ad , a solution is found after a finite number o
MC sweeps, i.e.,au(t) becomes zero at finite MC times
This solution time grows witha, and diverges once we ap
proach the dynamical thresholdad .

~b! For a.ad , the energy densityau(t) initially de-
creases and quickly equilibrates to a nonzero plateau~Fig. 2!.
For larger timesau(t) fluctuates around its plateau value,
can be seen for smaller system sizes, cf. Fig. 4. Eventu
and only if the formula is satisfiable, one of these fluctu
tions is large enough to reachau(t)50.

This behavior explains the origin of the title of the pap
For a.ad , the system equilibrates to a nonzero number
unsatisfied clauses, and only fluctuations around this equ
rium lead the dynamics to satisfying assignments, and
algorithm stops. Such macroscopic fluctuations appear
course, only with exponentially small probability, giving ris
to exponential solution times.

This observation leads to an obvious way of improvi
the algorithmic performance: We may choose a better h
ristic having a lower equilibrium number of unsatisfie
clauses. Exactly this is achieved by introducing a fractionq
.0 of greedy steps, see Fig. 5 where the plateau energ
determined as a function ofq for two different values ofa
.ad . We can see a minimum in the plateau energy for h
values of q. The dynamical threshold itself also chang

FIG. 3. 3-SAT: Histogram of the logarithm of the running tim
of walk-SAT without restarts fora53.5 andN5100.
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slightly and has a maximum atq.0.85. There formulas up
to a.2.8 can be solved in linear time.

B. Random K-XOR-SAT

A qualitatively similar behavior can be observed for ra
dom K-XOR-SAT, for K53 andq51 ~pure walk dynamics!.
The main difference is of a quantitative nature; the dyna
cal threshold marking the onset of exponential solution tim
is located atad.0.33. We therefore do not repeat the figur
given for random 3-SAT, but the corresponding numeri
data can be found in the following sections in comparison
analytical results.

IV. A RATE-EQUATION APPROACH TO THE
LINEAR-TIME BEHAVIOR

The main idea of the analytical approach presented in
section is to characterize each variable only by the numbe

FIG. 4. After the initial decreaseau fluctuates around its platea
value. Two different system sizes are shown. For the smaller
with N5150 a fluctuation after about 145 MC steps was lar
enough to reach a solution of the formula.

FIG. 5. 3-SAT: Plateau energy fora53.5 anda53.0 depending
on the fractionq of greedy steps performed by the algorithm. T
plateau energy is minimal forq50.95 ~a53.5! and q50.85 ~a
53.0!.
4-4
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satisfied and unsatisfied clauses it is contained in. We su
vide the set of allN Boolean variables into subsets
Nt(s,u) variables belonging tos satisfied andu unsatisfied
clauses, for a randomly selected variable the numberss andu
are thus taken with probabilitypt(s,u)5Nt(s,u)/N. The
numbersNt(s,u) and thus also the probabilitiespt(s,u) are
changed by the action of walk-SAT, but for every sing
variables1u remains constant as it counts the total num
of clauses containing this variable.

From these quantities we can, in particular, calculate
total number of unsatisfied clausesNau(t). Taking into ac-
count that by summing over variables every clause
countedK fold, we find

au~ t !5
^u& t

K
, ~2!

where ^•& t5(s,u(•)pt(s,u) denotes the average over th
distributionpt at MC time t.

The algorithm does not select variables according
pt(s,u), but selects first an unsatisfied clauseC* and then,
according to the chosen heuristic~greedy or walk step!, one
of the variablesv* in C* is flipped. The probability that
variablev* belongs to exactlys satisfied andu unsatisfied
clauses is denoted bypt

( f l ip )(s,u), and can be calculate
from pt(s,u) under the assumption ofindependence o
n

ea

e

06610
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neighboring sites, i.e., we assume that the joint distributio
for three variables being in one unsatisfied clause factori
This assumption, which we will exploit more frequently,
the main approximation we apply in the analytical approa
and it allows us to describe the full dynamics in terms
pt(s,u). It is strictly valid only for the initial configuration
of the dynamics, but as we will see below, it can give a go
approximation also for larger times.

For a walk step, variablev* is randomly selected in
C* . There areuNt(s,u) possibilities for selecting av*
which appears ins satisfied andu unsatisfied clauses
By normalization, we thus find the following selectio
probability:

pt
( f l ip 2walk)~s,u!5

upt~s,u!

^u& t
5:pt

(u)~s,u!. ~3!

For a greedy step, the only random choice is the selec
of the unsatisfied clauseC* . Then, the variablev* is se-
lected which appears in the smallest numbers of satisfied
clauses among allK variables inC* . If there is more than
one variable with the same minimals, then one of them is
chosen randomly. Applying the independent-site assumpt
and using the Heaviside function under the convent
Q(0)51/2, we find forK52
pt
( f l ip 222greedy)~s,u!5 (

s1 ,u1 ,s2 ,u2

pt
(u)~s1 ,u1!pt

(u)~s2 ,u2!@d (s1 ,u1),(s,u)Q~s22s1! 1d (s2 ,u2),(s,u)Q~s12s2!#

52pt
(u)~s,u! (

s8,u8
pt

(u)~s8,u8!Q~s82s!

5pt
(u)~s,u!F22 (

u850

` S pt
(u)~s,u8! 12 (

s850

s21

pt
(u)~s8,u8!D G , ~4!

and similarly forK53

pt
( f l ip 232greedy)~s,u!53pt

(u)~s,u! (
s8,u8,s9,u9

pt
(u)~s8,u8!pt

(u)~s9,u9!@Q~s82s!Q~s92s!11/12ds,s8ds,s9#

53pt
(u)~s,u!F12 (

u850

` S 1/2pt
(u)~s,u8!1 (

s850

s21

pt
(u)~s8,u8!D G 2

11/4pt
(u)~s,u!F (

u850

`

pt
(u)~s,u8!G 2

. ~5!
d,

ng-
not

se

ns:
Note that the contributionds,s8ds,s9/12 is a correction term
for the case thats5s85s9 which results from the conventio
Q(0)51/2.

For the full algorithms, these two different steps app
with probabilities q and 12q. The selection probability
pt

( f l ip )(s,u) is thus given by the linear combination of th
two cases,

pt
( f l ip )~s,u!5qpt

( f l ip 2walk)~s,u!

1~12q!pt
( f l ip 2K2greedy)~s,u!. ~6!
r

At this point, GSAT-like heuristics could also be include
e.g., by taking pt

( f l ip )(s,u);ugpt(s,u) with g.1. This
would guarantee a preferential selection of variables belo
ing to a high number of unsatisfied clauses. Here, we do
consider this additional possibility.

A. A Poissonian estimate for the pure walk dynamics

For a moment, we concentrate on the simplified ca
where the algorithms uses only walk steps, i.e., toq51 @35#.
We further assume thats andu are, for arbitrary times, dis-
tributed independently according to Poissonian distributio
4-5
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BARTHEL, HARTMANN, AND WEIGT PHYSICAL REVIEW E 67, 066104 ~2003!
pt~s,u!5e2Ka
@Kas~ t !#s@Kau~ t !#u

s!u!
. ~7!

Again, this assumption is valid fort50, whereas deviations
appear for larger times. On an average each variable is
tained inKas(t)5K„a2au(t)… satisfied andKau(t) unsat-
isfied clauses. If we plug this ansatz into Eq.~3!, we get for
an algorithm without greedy steps

pt
( f l ip )~s,u!5e2Ka

@Kas~ t !#s@Kau~ t !#u21

s! ~u21!!
, ~8!

which again is a product of Poissonian distributions ofs and
u21. Hence, on average, the negated variablev* is con-
tained inKas(t) satisfied andKau(t)11 unsatisfied clauses

1. Random K-XOR-SAT

We continue by first considering the analytically simp
case ofK-XOR-SAT. There, by flippingv* , all s satisfied
clauses containingv* become unsatisfied, whereas allu un-
satisfied ones become satisfied. Theexpected number of un
satisfied clauses Nt

(u) changes during one step as

DNt
(u)52@Kau~ t !11#1Kas~ t !5Ka22Kau~ t !21.

~9!

Concentrating on theaverage dynamics, which is followed
with probability approaching 1 in the thermodynamic lim
N→`, we haveNt

(u)5Nau(t). Measuring the timet in MC
sweeps, every algorithmic step contributes aDt51/N, and
the difference on the left-hand side of Eq.~9! can be replaced
by a time derivative~if N@1),

ȧu~ t !5Ka22Kau~ t !21. ~10!

If we solve this differential equation, we get for the the e
ergy density ofK-XOR-SAT

au~ t !5
1

2K
~Ka211Ce22Kt!. ~11!

In the typical starting configuration half the clause are sa
fied and half are not, i.e.,au(0)5a/2. So, we finally get

au~ t !5
1

2K
~Ka211e22Kt!. ~12!

In Fig. 6, the results for differenta are compared with nu
merical simulations. For small times both curves coinci
because correlations have not yet builtup. Later the algori
reaches a lower density of unsatisfied clauses than the P
sonian approximation would suggest.

We also see that there are two different regimes. For sm
a, the energy decreases quickly to zero—reaching zer
finite MC times with nonzero slope. For largera, the num-
ber of unsatisfied clauses first decreases, but then reac
positive plateau value. Both regimes are separated by a
namical threshold that is located at
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ad5
1

K
. ~13!

In the special caseK53, we thus findad51/3 which coin-
cides perfectly with our numerical findings. Note that fora
,ad , the algorithm thus constructs a satisfying assignm
already after a linear number of algorithmic steps. Abo
ad , the algorithm does not reach a solution in linear tim
with a probability tending to 1 in the large-N limit.

2. Random K-SAT

For randomK-SAT, we can get a similar estimate. W
have to take into account that now satisfied clauses do
necessarily become unsatisfied if a contained variable is
verted. For eachK-SAT clauseC, there is one unsatisfying
and 2K21 possible satisfying assignments. The only ca
where the clause becomes unsatisfied by flipping a sin
variablev* is the assignment where this variable is the on
correct assigned variable inC. If we assume independen
clauses this happens with probability 1/(2K21), so we get
for the expected number of unsatisfied clauses

DNt
(u)52@Kau~ t !11#1

1

2K21
Kas~ t !

5
Ka

2K21
2

2KK

2K21
au~ t !21. ~14!

Going forN→` again to continuous-time quantities and d
ferential equations, we find

ȧu~ t !5
Ka

2K21
2

2KK

2K21
au~ t !21, ~15!

FIG. 6. 3-XOR-SAT: typical number of unsatisfied clauses~di-
vided by N), as a function of the MC timet, for walk-SAT with
walk stepsonly. Different ratios ofa are shown; from top to bottom
we havea51.5, 1, 0.75, 0.5, 0.35, 0.2. The dashed line is obtain
by numerically integrating Eq.~20!; the full line gives the Poisso-
nian approximation. These results are compared to the evolution
a ~random! single 3-XOR-SAT instance withN550 000, as given by
the symbols.
4-6
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with solution @the initial condition is given byau(0)
5a/2K]

au~ t !5
1

2KK
~Ka1@2K21#@e2[2K/(2K21)]t21# !, ~16!

cf. Fig. 8. For randomK-SAT, we thus find the Poissonia
estimate

ad5
2K21

K
, ~17!

for the onset of exponential solution times. In the spec
caseK53, we getad57/3 which is smaller than the nu
merical value 2.7.

B. Rate equation for the walk-SAT algorithm

We have seen that already a simple Poissonian appr
mation is able to qualitatively reproduce the behavior
walk-SAT for linear solution times, at least for a pure wa
dynamics without greedy steps. There were, however, s
systematic quantitative deviations, in particular, for the c
of randomK satisfiability. It is thus necessary to go beyo
the simple Poissonian ansatz forpt(s,u), i.e., for the time-
dependent fraction of Boolean variables belonging to exa
s satisfied andu unsatisfied clauses. Our aim is to work on
with these quantities, i.e., we still have to keep the appro
mation that the joint distribution for variables within on
clause factorizes. This approximation of independent ne
boring variables was already used in the beginning of
section, whenp( f l ip )(s,u) was derived, cf. Eqs.~3!–~6!.

1. Random K-XOR-SAT

As above, we denote byNt(s,u)5Npt(s,u) the expected
number of variables that occur in exactlys satisfied andu
unsatisfied clauses at stept. Our algorithm starts att50 and
each step counts asDt. We follow the procedure in Ref.@16#
to describe the typical evolution of the algorithm.

A variablev* with s* satisfied andu* unsatisfied clause
is flipped. This occurs with probabilitypt

( f l ip )(s* ,u* ). The
three different processes contributing toNt1Dt(s,u) are the
following:

(a) Contribution byv* . The s* satisfied clauses becom
unsatisfied, whereas theu* unsatisfied clauses become sat
fied. The number of variables characterized bys* satisfied,
u* unsatisfied clauses is thus decreased by one, the nu
of variables inu* satisfied ands* unsatisfied clauses is in
creased by one. This means that the expected numbe
variables Nt(s* ,u* ) is decreased bypt

( f l ip )(s* ,u* ), and
Nt(u* ,s* ) is increased by the same amount.

(b) Neighbors ofv* in previously satisfied clauses. The
flipped variablev* occurs, on an average, in^s& t

( f l ip ) previ-
ously satisfied clauses, where^•& t

( f l ip )5(s,u(•)pt
( f l ip )(s,u).

Since each clause containsK variables, and since random
formulas are locally treelike, there are on an averageK
21)^s& t

( f l ip ) neighbors in previously satisfied clauses.
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All these clauses become unsatisfied. This means tha
each other variable contained in these satisfied clauses
number of satisfied clauses goes down by one, the numbe
unsatisfied clauses is increased by one. Taking into acc
that, according to the assumption of independent neighb
these belong tos satisfied andu unsatisfied clauses with
probability spt(s,u)/^s& t , we conclude thatNt(s,u) is, on
an average, decreased by (K21)^s& t

( f l ip )sp(s,u)/^s& t . One
out of theses satisfied clauses is the one with the flipp
variable v* , so the decrease ofNt(s,u) is now added to
Nt(s21,u11).

(c) Neighbors ofv* in previously unsatisfied clauses.
Analogously to the discussion in the last item one gets c
tributions toNt(s,u) for variablesv that occur together with
v* in unsatisfied clauses.

Combining these processes, we get an evolution equa
for the expected numbersNt(s,u) of variables appearing in
exactlys satisfied andu unsatisfied clauses at timet:

Nt1Dt~s,u!5Nt~s,u!2pt
( f l ip )~s,u!1pt

( f l ip )~u,s!1~K21!

3^s& t
( f l ip )S 2

spt~s,u!

^s& t

1
~s11!pt~s11,u21!

^s& t
D1~K21!^u& t

( f l ip )

3S 2
upt~s,u!

^u& t
1

~u11!pt~s21,u11!

^u& t
D .

~18!

Setting againDt51/N and replacing differences by de
rivatives in the thermodynamic limit,

Nt1Dt~s,u!2Nt~s,u!5N@pt1Dt~s,u!2pt~s,u!#

5
pt1Dt~s,u!2pt~s,u!

Dt
→ d

dt
pt~s,u!,

~19!

we get a set of differential equations forpt(s,u),

ṗt~s,u!52pt
( f l ip )~s,u!1pt

( f l ip )~u,s!1~K21!^s& t
( f l ip )

3S 2
spt~s,u!

^s& t
1

~s11!pt~s11,u21!

^s& t
D1~K21!

3^u& t
( f l ip )S 2

upt~s,u!

^u& t
1

~u11!pt~s21,u11!

^u& t
D .

~20!

In the typical initial configuration, the probability of a
clause to be unsatisfied is 1/2 and sop0(s,u) is given by Eq.
~7! with as(t)5au(t)51/2.

By numerical integration of Eq.~20!, we can find the
typical trajectory for an algorithm with givenpt

( f l ip ) . The
results for an algorithms without greedy steps@e.g.,
pt

( f l ip )(s,u)5pt
(u)(s,u)] for different values of the ratioa

5M /N are shown in Fig. 6. They are compared with nume
4-7
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BARTHEL, HARTMANN, AND WEIGT PHYSICAL REVIEW E 67, 066104 ~2003!
cal data obtained from single runs of the algorithm on a la
single, randomly selected sample formula. As we can see
assumption of independent variables is suitable to desc
the behavior of the algorithm in this model. We also see t
the dynamical thresholdad , which marks the onset of expo
nential solution times, is again given by 1/3.

When analyzing the algorithm including a fraction
greedy steps, we see that the assumption of independent
ables is indeed very crucial. In Fig. 7, we show the resul
the numerical integration now using p( f l ip )(s,u)
5qp( f l ip 2walk)(s,u)1(12q)pt

( f l ip 232greedy)(s,u) as given
by Eq. ~6!. In this case, the flipping probability of a variab
depends on its neighbors, too, and correlations betw
neighbors appear naturally. This explains why the ans
does not give a good quantitative approximation wh
greedy steps are included.

2. Random K-SAT

Let us now consider the slightly more involved case
randomK-SAT. As already discussed in the context of t
Poissonian approximation, we have to take into account
flipping a variable does not necessarily unsatisfy all pre
ously satisfied clauses the variable is contained in. We
sume again that the probability of such a clause to beco
unsatisfied is clause and time independently given by its
ive averagem51/(2K21). Similar to XOR-SAT, we get
three contributions toNt1Dt(s,u), one coming from the
flipped variable itself, two from neighbors in previously sa
isfied ~unsatisfied! clauses.

~a! If the flipped variablev* appears in exactlys* satis-
fied and u* unsatisfied clauses than, as inXOR-SAT,
Nt(s* ,u* ) is decreased by one. This happens with proba
ity pt

( f l ip )(s* ,u* ). By flipping v* , all u* previously unsat-
isfied clauses become satisfied. Out of thes* previously sat-

FIG. 7. 3-XOR-SAT: influence of greedy steps on the behavior
the energy density ata50.75. As above the dashed line is obtain
by numerically integrating Eq.~20! after plugging in Eq.~6! and
using N51/Dt550 000. The dotted line shows the evolution of
~random! single run of the algorithm withN550 000. From top to
bottom, we haveq50 ~i.e., no greedy steps!, q50.5, q50.7, q
50.9. The energy plateau decreases withq but due to correlations
the integrated equation does not fit the numerical data.
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isfied clauses, a random numberk remains satisfied,s* 2k
become unsatisfied, i.e.,Nt(u* 1k,s* 2k) is increased by
one. There are (k

s* ) possibilities for selecting thesek clauses,

each one appearing with probabilityms* 2k(12m)k. The to-
tal contribution byv* is obtained by summing over all pos
sible values ofk.

~b! The contributions from neighbors of the flipped va
able are similar toXOR-SAT. The only difference is that the
average number of neighboring variables on satisfied clau
becoming unsatisfied is nowm(K21)^s& t

( f l ip ) .
Combining all contributions, we derive a set of differe

tial equations for the probability distribution of the variable

ṗt~s,u!52pt
( f l ip )~s,u!1S 1

2K21
D u

(
k50

s S u1k
k D S 1

2
1

2K21
D k

pt
( f l ip )~u1k,s2k!1

K21

2K21
^s& t

( f l ip )

3S 2
spt~s,u!

^s& t
1

~s11!pt~s11,u21!

^s& t
D1~K21!

3^u& t
( f l ip )S 2

upt~s,u!

^u& t
1

~u11!pt~s21,u11!

^u& t
D .

~21!

Also these equations have to be solved numerically. The
sults for the most interesting caseK53 @i.e., qu51/(2K

21)51/7] for different values ofa are shown in Fig. 8.
Even if they are quantitatively much more accurate than
Poissonian approximation, there are some systematic de
tions compared to the direct numerical simulations. T
curves match the simulation results for small times. Th
correlations between neighboring variables buildup, viol
ing our basic assumption. However, for larger times b
curves match again, because the same distributionpt(s,u) is
reached. This can be seen in the histogram in Fig. 9: At
51.4, the distributionspt(s,u) as derived from the rate
equations or evaluated numerically are different, while af
t56 they again have almost converged to the same distr
tion.

This observation allows for a precise determination of
dynamical thresholdad which marks the transition from
typically linear to exponential algorithmic solution time
needed by walk-SAT; the transition is defined by the po
where the expected energy densityau(t) asymptotically does
not decrease to zero any more. In Fig. 10, one can see
for K53, this happens atad.2.71.

As already observed forXOR-SAT, the influence of greedy
steps cannot be reproduced very well. In Fig. 11, we sh
results for three differentq at a53.5. The energy density
obtained by assuming independent variables gives a too
energy density. Fora50.9, it even decreases to zero at fin
times, contrary to our numerical results~cf. Sec. III A!. We
therefore conclude that the independent-neighbor approxi
tion is only suitable for the case without greedy steps, wh
less correlations can be builtup.

f

4-8
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SOLVING SATISFIABILITY PROBLEMS BY . . . PHYSICAL REVIEW E67, 066104 ~2003!
V. LARGE DEVIATIONS AND THE EXPONENTIAL-TIME
BEHAVIOR

In the last section, we have characterized thetypical
linear-time behaviorof walk-SAT on satisfiable, randomly
generatedK-SAT andK-XOR-SAT formulas. We have, within
some approximation assuming independent neighbors, ca
lated the trajectory that is followed by the system in terms
the probabilitiespt(s,u) that a randomly selected variab
belongs to exactlys satisfiable andu unsatisfiable clauses
‘‘Typical’’ behavior means in this context that the trajecto
is followed with probability tending to one in the thermod
namic limit N→`.

We have seen that there exists some~model-dependent!
dynamical thresholdad , below which the algorithm reache
zero energy, i.e., a solution of the SAT formula, after line

FIG. 8. 3-SAT: Running time of the walk-SAT algorithm wit
walk stepsonly. Different ratios ofa are shown; from top to bot-
tom, we havea54.0,3.5,3.0,2.85,2.7. The dashed line is obtain
by integrating Eq.~21! with N51/Dt550 000. The symbols show
the evolution of a~random! single run of the algorithm withN
550 000. The solid line shows the analytical solution~12! of the
Markov equation assuming a Poissonian distributionpt(s,u) for all
times t; for clarity only a54.0 and 2.85 are depicted.
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time. Abovead , the typical trajectory, however, shows a fa
equilibration towards a nonzero plateau valueau(t→`).
The walk-SAT algorithm is no longer able to construct
solution in linear time, i.e., we expect the solution times
become exponentially large. The approach of Sec. IV t
fails to describe the final descent of the energy to zero.

In Sec. III, we have seen that, for smaller system siz
the number of unsatisfied clauses fluctuates around its
pected value. Eventually, these fluctuations become la
enough that the system by chance hits a solution
fluctuations are the way walk-SAT finally succeeds co
structing a solution. However, we expect these fluctuation
be exponentially rare, i.e., we have to wait almost surely
exponentially long time to really touch a solution.

This section is dedicated to characterizing these fluct
tions, or, more precisely, to calculating the probabil
P„au(0)→au(t f)50… that the system reachesau(t f)50 af-
ter some finite timet f , under the condition that the syste

d

FIG. 10. 3-SAT: the left curve shows the~linear! solution time
after which the expected energy densityau(t) ~from rate equations!
reaches zero, as a function ofa. This time diverges logarithmically
at ad . For largera, a nonzero energy plateau is found, which
shown in the right curve.
d
r

FIG. 9. 3-SAT: distributionspt(s,u) for t51.4 ~left! andt56. The results are shown as a function ofs; the different curves correspon
to u50, 1, 2, 3~from top to bottom!. One can see that numerical and analytical results differ fort51.4, whereas they are very close fo
larger times corresponding to the energy plateau.
4-9
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BARTHEL, HARTMANN, AND WEIGT PHYSICAL REVIEW E 67, 066104 ~2003!
started initially with someau(0). This probability gives all
important information about the dominant exponential co
tribution to the typical running timestsol.eNt beyondad .

~a! For walk-SAT without restarts, we start from a typical
initial condition au(0)51/2K ~for K-SAT! resp. 1/2 ~for
K-XOR-SAT!, and we wait until the system reachesau(t)
50. This does not happen for finite times, i.e., the solut
time is given by the exponent

t.2 lim
t f→`

lim
N→`

1

N
lnP„au~0!→au~ t f !50…. ~22!

The solution time is thus, in general, exponentially large
N. Note that the order of limits in the above expression
relevant, theret f measures only a finite MC time scale. Wi
interchanged limits, the right-hand side would vanish, sin
the algorithm finds a solution after exponential timest f with
probability 1.

~b! For walk-SAT with restarts, the situation change
slightly. Let us assume that the algorithm stops everyt fN
walk-SAT iterations and reinitializes the variables random
In this case, we have to take into account two distinct r
events: First, the starting point may be close to a solut
i.e., au(0) is atypically small. This happens with probabili
r„au(o)…;eNs„au(0)…, wheres„au(0)… is the microcanonica
entropy for the energy densityau(0). r„au(0)… tends to one
for the typical starting point discussed in the previous ite
and becomes exponentially rare for smaller initial energ
This may be balanced by the fact that finding a solution a
some given timet f becomes more probable for smaller initi
energies. From the probability of finding a solution after
single restart,r„au(0)…max0<t<tf

P„au(0)→au(t)50…, we

can readoff the number of restartstsol5eNt needed to find a
solution with high probability:

t.2max
au(0)

lim
N→`

1

N
ln@r„au~0!… max

0<t<t f

P„au~0!→au~ t !50…#.

~23!

FIG. 11. 3-SAT: Influence of greedy steps ata53.50. As above
the dashed line is obtained by numerically integrating Eq.~20! after
plugging in Eq.~6!. From top to bottom, we haveq50.5, q50.7,
q50.9. The symbols show simulation data for the evolution o
single run of the algorithm withN5500 000.
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Our aim is thus to calculate the large-deviation function
determiningP„au(0)→au(t f)50…. As we will see, this can
be done only within the Poissonian approximation, i.
throughout this section, we assume

pt~s,u!5e2Ka
@Kas~ t !#s@Kau~ t !#u

s!u!
, ~24!

with au(t)1as(t)5a being time independent.

A. Random K-XOR-SAT

Here, we discuss only an algorithm without greedy ste
where the above approximation works reasonably w
Therefore,pt

( f l ip )(s,u) is given by Eq. 8. The number o
unsatisfied clauses in a formula at timet is given byNau(t).
This number changes byDe5s2u in the next step if a vari-
able withu unsatisfied ands satisfied clauses is flipped. Th
probabilityP(De) of a given energy shiftDe in a single step
is consequently given by

Pt~De!5 (
s,u50

`

pt
( f l ip )~s,u!dDe,s2u

5 (
s,u50

`
upt~s,u!

Kau~ t !
dDe,s2u

5 (
s,u50

`

e2Ka
@Kas~ t !#s@Kau~ t !#u

s!u!

u

Kau~ t !
dDe,s2u

5 (
s,u850

`

e2Ka
@Kas~ t !#s@Kau~ t !#u8

s!u8!
dDe,s2u821 .

~25!

The probabilityPDT,t(DE) of a change of the number o
unsatisfied clauses byDE after DT steps is given by the
convolution of the single-step probabilities. ForDT5Ndt
with smalldt!1, the energy densityau(t) and thusPt(De)
are almost time independent, so we get in Fourier space

P̂DT,t~ l !5~ P̂t~ l !!DT

5S (
s,u50

`

e2Ka
@Kas~ t !#s@Kau~ t !#u

s!u!

3exp$2 i l ~s2u21!% D DT

5@exp$2Ka1Kas~ t !e2 i l 1Kau~ t !eil 1 i l %#DT.

~26!

Switching again to intensive quantities, we haveDE

5Nȧu(t)dt and thus
4-10
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SOLVING SATISFIABILITY PROBLEMS BY . . . PHYSICAL REVIEW E67, 066104 ~2003!
PDT,t~DE!5E dl

2p
eil DE~ P̂t~ l !!DT

5E dl

2p
exp$Ndt@ i l ȧu~ t !2Ka

1K„a2au~ t !…e2 i l 1Kau~ t !eil 1 i l #%, ~27!

as the probability of the algorithm for getting from ener
densityau5E/N at time t to energy density (E2DE)/N at
time t1DT. To calculate the transition probability betwee
au(0) and arbitraryau(t f) after linear timet fN, we write t f
as a composition of many small intervalsdt. We then get
that the transition probability by integrating over all possib
pathsau(t) going from au(0) to au(t f). By this step also
the conjugate variablel becomes a time-dependent functio
l (t),

P„au~0!→au~ t f !…5E
au(0)

au(t f )Dau~ t !E Dl ~ t !

3expH 2NE
0

t

dtL„l ~ t !,au~ t !,ȧu~ t !…J , ~28!

where the LagrangianL is given by

L„l ~ t !,au~ t !,ȧu~ t !…52 i l ~ t !ȧu~ t !1Ka2K„a

2au~ t !…e2 i l (t)2Kau~ t !eil (t)2 i l ~ t !.

~29!

We can replace the integral by its saddle point in the therm
dynamic limit. Sincel (t) is not a dynamic variable@ l̇ (t)
does not appear in the Lagrangian#, we find

05
]L
] l

5 i ȧu~ t !2 iK „a2au~ t !…e2 i l (t)1 iKau~ t !eil (t)1 i .

~30!

The saddle point inau(t) is given by the Euler-Lagrang
equation

05
d

dt

]L
]ȧu

2
]L
]au

5 i l̇ ~ t !1Ke2 i l (t)2Keil (t). ~31!

We are, in particular, interested in trajectories leading t
solution of the formula, i.e., trajectories starting at so
au(0) and going toau(t f)50 after some given final timet f .
This results in a set of two coupled first-order nonlinear d
ferential equations forau(t) and l (t) with two boundary
conditions given forau(t), and none forl (t). By substitut-
ing k(t)5eil (t) the equations read

ȧu~ t !5212Kau~ t !k~ t !1K
a2au~ t !

k~ t !
,

k̇~ t !5Kk2~ t !2K. ~32!

A trivial solution of the second equation,k(t)[1 leads to
ȧu(t)5212Kau(t)1K„a2au(t)…, which is exactly the
06610
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equation for the typical trajectory given by Eq. 10. Indee
we haveL(k[1,au ,ȧu)[0, so this trajectory has probabi
ity 1 in the thermodynamic limit.

This solution is, however, not stable since we havek̇(t)
,0 for k(0),1 and k̇(t).0 for k(0).1, i.e., the trajec-
tory deviates from the typical one oncek deviates from 1.
We can, however, solve the equations forXOR-SAT in this
Poissonian approximation and get

k~ t !5
11Ae2Kt

12Ae2Kt
,

au~ t !5au~0!e22Kt
12A2e4Kt

12A2
1E

0

t

dtS 21

1Ka
12Ae2Kt

11Ae2KtD e22K(t2t)
12A2e4Kt

12A2e4Kt
. ~33!

In principle, also the integrals in the second expression
be carried out analytically, but we failed to find a compa
representation of the result. The solution still contains
unknown constantA which has to be adjusted to meet th
final condition au(t f)50. We have observed thatA is
slightly smaller thane22Kt f , but it is easier to determine
t f(A) than its inverseA(t f).

The trajectories show an interesting behavior, cf. Fig.
after about 1 MC sweep the energy reaches a plateau i
pendent of the starting energy densityau(t). The plateau
value is the same as given by the typical trajectory and
most independent of the timet f where the solution is found
The energy drops to 0 suddenly about 1 MC sweep be
t f . This is similar to the qualitative picture, we observ
numerically in Sec. III: The system first equilibrates a
then, by means of an exponentially improbable fluctuati
reaches zero energy, cf. Fig. 4. The fluctuations that
present in the numerical data cannot be seen in the analy
curve due to the fact that the latter one gives an average
all possible trajectories under the condition thatau50 is
reached for the first time att f , so only the very last fluctua
tion leading to the solution is common to all possible n
merical trajectories.

To calculate the probability that the algorithm, starting
someau(0), finds a solution after timet f , we have to cal-
culate the action

S~L„k~ t !,au~ t !,ȧu~ t !…!5E
0

t f
dtL„k~ t !,au~ t !,ȧu~ t !…

5E
0

t f
dtS 2 ln@k~ t !#@ȧu~ t !11#

1Ka2K
a2au~ t !

k~ t !

2Kau~ t !k~ t ! D , ~34!
4-11
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using solution~33!. The evaluation is simplified by pluggin
in the saddle-point equations in order to eliminateȧu(t),

S~L„k~ t !,au~ t !,ȧu~ t !…!

5KE
0

t f
dtS 2 ln@k~ t !#F2au~ t !k~ t !1

a2au~ t !

k~ t ! G
1a2

a2au~ t !

k~ t !
2au~ t !k~ t ! D . ~35!

The results are shown in Fig. 13 for different values of t
initial condition au(0) and different solution times. For th
typical initial condition au(0)5a/2, we find a monotoni-
cally decreasing function that has practically reached
asymptotic value fort f.1. From Eq. 28, the probability tha
the algorithm finds a solution is given by

P„au~0!→au~ t f !50…5exp$2NS%, ~36!

and the typical solution time of the algorithmwithout restarts
is given by Eq.~22!,

tsol5 lim
t f→`

eNS. ~37!

We also observe that, for smaller than typicalau(0), the
action shows a pronounced minimum for small soluti
times. This minimum corresponds to trajectories that s
close to a solution@smallau(0)] and gomore or less directly
to this solution~small t f). As discussed in the beginning o
this section, it may be possible that the algorithm can pr
from this by using random restarts. Taking the entropy
calculated in Ref.@26#, we, however, find that the minimum
in S is overcompensated by the small entropy of low-ene
starting configurations, cf. the inset of Fig. 13, whe
t„au(0),t f…521/N ln@r„au(0)…P# is presented. The mini
mum of t is still found for the typical starting configuratio
and it is related to the typical running time bytsol
5mineNt[au(0),tf]. Here, it coincides with the solution tim
without restarts.

FIG. 12. 3-XOR-SAT ata52/3: energy densitiesau(t) for vari-
ous initial conditionsau(0) and solution timest f . The system first
equilibrates to a plateau being independent of the initial condit
and finally solves the SAT formula by a macroscopic fluctuation
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In Fig. 14, the resulting solution time is compared to n
merical data obtained using the algorithm with random
starts after 3N iterations. Due to the exponential behavi
only small systems up toN570 could be investigated in th
full satisfiable region. The resulting running times seem to
much smaller than the analytical predictions. There are, h
ever, huge finite size effects. In the inset, we show numer
data fora50.4 and 0.42, where the exponent is still sm
enough that systems up toN51000 can be easily solved. It i
obvious that even from such large systems the asympt
running time cannot be reasonably estimated. On the o
hand, the qualitative behavior is well represented by the a
lytical curve, in particular the sublinear slope close to t
threshold. The analytical curve suggests lntsol;Aa2ad. An-
other interesting observation is that, at the SAT-UNS
threshold ac50.918, the analytical prediction for th
solution-time exponent is 0.249, which is smaller but qu
close to Scho¨ning’s rigorous upper worst-case boun
ln(4/3).0.288.

B. Random K-SAT

The same type of analysis can be done for the case
randomK-SAT. The main difference is, as mentioned alrea
in Sec. IV, that a satisfied clause does not necessarily bec
unsatisfied when one of its variables is flipped. This happ
only if the clause is satisfied only by the variable to
flipped, which is one of the 2K21 satisfying assignments t
this clause. We again use the assumption that the variable
one clause are uncorrelated and assume that a clause
comes unsatisfied with probabilitym51/(2K21). In anal-
ogy to the discussion above, we conclude that the probab
that a variable flip leads to a given energy changeDe is
given by

Pt~De!5 (
s,u50

`

pt
( f l ip )~s,u!(

k50

s S s

kDmk~12m!s2kdDe,k2u ,

~38!

,

FIG. 13. 3-XOR-SAT at a52/3: actionS as a function of the
resolution time t f , for initial conditions au(0)50.02, 0.06,
0.1, . . .,0.34, from bottom to top. The inset shows the logarithm
the predicted solution time for the same valuesau(0), but now
from top to bottom.
4-12
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wherek sums over all possible numbers of clauses that
come unsatisfied in the considered algorithmic step. Conc
trating again on the pure walk algorithm without gree
steps, i.e., onq51, we can go through the same procedu
as forK-XOR-SAT. The transition probability from some ini
tial to some final density of unsatisfied clauses is, in
Poissonian approximation~24! given by the path integral

P„au~0!→au~ t f !…5E
au(0)

au(t f )Dau~ t !E Dk~ t !

3expH 2NE
0

t

dtL~k~ t !,au~ t !,ȧu~ t !!J ,

~39!

with the modified Lagrangian

L„k~ t !,au~ t !,ȧu~ t !…52@11ȧu~ t !# ln@k~ t !#1Ka2K@a

2au~ t !#S 12m1
m

k~ t ! D
2Kau~ t !k~ t !. ~40!

The saddle-point equations are given by

ȧu~ t !5212Kau~ t !k~ t !1Km
a2au~ t !

k~ t !
,

k̇~ t !5Kk2~ t !2K~12m!k~ t !2Km. ~41!

Their solution dominates, forN→`, the path integral~39!
and is given by the generalization of Eqs.~33!:

FIG. 14. 3-XOR-SAT: solution timetsol for Schöning’s algorithm
~only walk steps, random restarts aftert fN53N steps! measured as
the number of restarts, as a function ofa. The analytical result is
given by the full line. Numerical data forN530, 50, 70~dots,
squares, diamonds, lines are guides to the eyes only! seem to indi-
cate much smaller solution times. The inset shows, however,
there are huge finite size effects fora50.4,0.42~crosses, stars!.
The analytical estimates for the corresponding solution times
ln(tsol)/N.0.0061,0.0099.
06610
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k~ t !5
11mAe2Kt

12Ae2Kt
,

au~ t !5au~0!e2(11m)Kt
12Ae(11m)Kt

12A

11mAe(11m)Kt

11mA

1E
0

t

dtS 211mKa
12Ae(11m)Kt

11mAe(11m)KtD e2(11m)K(t2t)

3
12Ae(11m)Kt

12Ae(11m)Kt

11mAe(11m)Kt

11mAe(11m)Kt
. ~42!

The results for the typical trajectories leading to a solut
after some given final timet f are presented in Fig.~15!. They
show the same qualitative behavior likeK-XOR-SAT with a
slightly slower convergence towards the equilibrium due
the reduced exponential factore2(11m)Kt. Also the action
calculated for the trajectories shows a similar behavior l
for K-XOR-SAT, cf. Fig. 16. The exponentially dominant con
tribution to the typical solution time is again given bytsol
; limt f→`eNS(t f ).

In Fig. 17, we finally compare the predicted typical sol
tion time with numerical simulations. Close to the dynamic
threshold, the numerical running times are much smal
which can be explained already by the fact that the Pois
nian approximation underestimatesad . For largera, the nu-
merical data cross the analytical approximation, but both s
well below Scho¨ning’s bound. This is to be expected, sin
there is an exponential number of possible solutions, wh
Schöning assumes only the existence of a single one. N
that the solution times are exponentially smaller for 3-S
than for random 3-XOR-SAT.

VI. CONCLUSION AND OUTLOOK

In this paper, we have presented an approximate ana
cal approach to describe the dynamical behavior of a clas

at

re

FIG. 15. 3-SAT ata53.5: energy densitiesau(t) for various
initial conditions au(0) and solution timest f . The system
first equilibrates to a plateau being independent on the initial c
dition, and finally solves the SAT formula by a macroscopic flu
tuation.
4-13
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stochastic local search algorithms applied to rand
K-satisfiability andK-XOR-satisfiability problems. We have
seen that there are two distinct dynamical phases.

~a! For clause-to-variable ratioa,ad ~with ad being al-
gorithm and problem dependent!, the algorithm is able to
solve almost all instances in linear time. In this regime,
dynamics was studied using a simple rate-equation appro
which was able to capture the most important features of
average trajectory taken by the system under the action o
algorithm.

~b! For a.ad , typical solution times were found to sca
exponentially with the system size given by the number
variablesN. This behavior could be understood analytica
using a functional-integral approach to evaluate the proba
ity of large deviations from the typical trajectory. We foun
the following behavior: The system equilibrates very fast t
nonzero plateau in the number of unsatisfied clauses. T
the system only fluctuates around this plateau. This goe
until an exponentially improbable macroscopic fluctuati
towards one of the solutions appear, and the algorithm st
The small probability of these fluctuations explains the
ponentially large waiting times until a satisfying assignme
is reached.

For the exponential-time regime, only a Poissonian
proximation was used. In principle, it would be possible
go beyond this ansatz using the full distributionpt(s,u) of
vertices withs satisfied andu unsatisfied clauses. Followin
the same scheme as in the Poissonian approach, we re
system of the first-order differential equations for allpt(s,u)
and their conjugate parametersk t(s,u). Being nonlinear, it is
far from obvious how to construct an analytical solution. B
also the numerical integration of these equations is a h
problem: For thept(s,u) there are initial and final condi
tions, whereas thek t(s,u) have no boundary condition at al
The question if it is possible to follow this improved a
proach is still under investigation.

Another possible extension of this work concerns the
plication of different heuristics such as GSAT that was d

FIG. 16. 3-SAT ata53.5: actionS as a function of the resolu
tion time t f , for initial conditionsau(0)/a50.1, 0.3, 0.5, . . . ,1.3,
from bottom to top.
06610
e
ch
e

he

f

il-

a
en
on

s.
-
t

-

h a

t
rd

-
-

cussed in the second section. The analytical approach
serve as a basis for evaluating the relative performance
different heuristics and, as a consequence of the ins
gained, also as a step towards a systematic improveme
stochastic local search.

A third point that remains open is the question that h
far the solution space structure influences the performanc
walk-SAT. As discussed in the beginning of the paper, r
dom K-SAT and randomK-XOR-SAT undergo a clustering
transition deep inside the satisfiable phase. Below this tr
sition, all solutions are collected in one huge cluster, abo
an exponential number of such clusters exists. The cluste
transition is also connected to a proliferation of metasta
states which are expected to cause problems for any l
algorithm. However, in our approach to the walk-SAT d
namics, we do not see any sign of a direct impact of t
transition on the performance of the algorithms under c
sideration. The onset of exponential solution times is fou
to be inside the unclustered phase. It thus remains an o
problem whether the clustering transition can be approac
by using improved heuristic criteria.

Note added. Recently, we noticed that a complementa
study of the walk-SAT algorithm was carried out indepe
dently by Semerjian and Monasson@23#.
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FIG. 17. 3-SAT: solution timetsol for Schöning’s algorithm
~only walk steps, random restarts aftert fN53N steps! measured as
the number of restarts, as a function ofa. The analytical result is
given by the full line. Numerical data forN530, 50, 70~squares,
dots, diamonds! this time cross the analytical prediction. Note th
the solution times are smaller than for 3-XOR-SAT.
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